发表评论取消回复
相关阅读
相关 机器学习决策树算法cart剪枝
目录 1 为什么要剪枝 2 常用的减枝方法 2.1 预剪枝 2.2 后剪枝 3 小结 -------------------
相关 决策树(2)CART
上一篇文章介绍了基于ID3的决策树,讲到了其中的关键元素是:特征选择、决策树构造以及剪枝;同样,CART(classification and regression tree)
相关 CART决策树
参考: 1. [http://www.cnblogs.com/yonghao/p/5135386.html][http_www.cnblogs.com_yonghao_
相关 R语言编写决策树(rpart)CART ID3算法
决策树(decision tree)是一类常见的机器学习方法。以二分类任务为例,我们希望从给定训练数据集学得一个模型用以对新示例进行分类,这个把样本分类的任务,可看做对“当前样
相关 cart树回归
回归树:使用平方误差最小准则 训练集为:D=\{(x1,y1), (x2,y2), …, (xn,yn)\}。 输出Y为连续变量,将输入划分为M个区域,分别为R1
相关 数据挖掘算法03 - CART
CART > CART 算法 另一种常见的决策树是 CART 算法(Classification and Regression Trees,分类与回归树)。这种算法和
相关 python cart算法的简单实现
下面是python cart算法的简单实现,可以直接复制下面代码进行运行,即可查看模型的拟合曲线 import matplotlib.pyplot as plt
还没有评论,来说两句吧...