发表评论取消回复
相关阅读
相关 特征工程-特征提取:字典特征提取、文本特征提取、jieba分词处理、Tf-idf文本特征提取
![20191009191333910.png][][日萌社][Link 1] [人工智能AI:Keras PyTorch MXNet TensorFlow Paddle
相关 特征工程——文本特征
目录 文本特征 1.expansion编码 2.consolidation编码 3.文本长度特征 4.标点符号特征 5.词汇属性特征 6.特殊词汇特征 7.词频
相关 【NLP-新闻文本分类】2特征工程
赛题 来自阿里天池的新闻文本分类赛题。具体赛题和前序步骤数据分析查看另一篇博客。 [【NLP-新闻文本分类】1 数据分析和探索][NLP-_1] 1 引言 特
相关 (7)文本挖掘(四)——特征选择
特征选择指的是按照一定的规则从原来的特征集合中选择出一小部分最为有效的特征。通过特征选择,一些和任务无关或是冗余的特征被删除,从而提高数据处理的效率。 文本数据的特征选择研
相关 (6)文本挖掘(三)——文本特征TFIDF权重计算及文本向量空间VSM表示
建立文本数据数学描述的过程分为三个步骤:文本预处理、建立向量空间模型和优化文本向量。文本预处理主要采用分词、停用词过滤等技术将原始的文本字符串转化为词条串或者特点的符号串。文本
相关 特征选择 GBDT 特征重要度
Tree ensemble算法的特征重要度计算 集成学习因具有预测精度高的优势而受到广泛关注,尤其是使用决策树作为基学习器的集成学习[算法][Link 1]。树的集成算法
相关 文本特征选择的关键算法总结
一、特征词选择与特征词权重关系 开始学文本分类的时候经常要搞晕特征词选择和特征词权重 这两个东西,因为两者都要进行量化,很容易认为特征词选择就是计算权重,因此我认为有必要先搞
相关 特征选择_过滤特征选择
一:方差选择法: 使用方差作为特征评分标准,如果某个特征的取值差异不大,通常认为该特征对区分样本的贡献度不大 因此在构造特征过程中去掉方差小于阈值特征 f
相关 通过机器学习得到样本的特征权重
描述: 计算每个特征对样本集进行划分所获得的信息增益,然后做归一化处理可以得到每个特征的权重 目标: 样本降维 一种算法策略:参考决策树的划分选择 首先引
相关 文本分类入门(番外篇)特征选择与特征权重计算的区别
http://www.blogjava.net/zhenandaci/archive/2009/04/19/266388.html 在文本分类的过程中,特征(也可以简单的理解
还没有评论,来说两句吧...